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We study the problem of the stability of a nearly spherical converging shock wave in a van der Waals gas
and consider the implications for sonoluminescence. An approximate geometrical theory of shock propogation,
due to Whitham@Linear and Non-linear Waves~Wiley, New York, 1974!; J. Fluid. Mech.2, 146 ~1957!; 5,
369 ~1959!#, is used. A first-order treatment of deviations from spherical symmetry, similar to one performed
by Gardner, Brook, and Bernstein@J. Fluid Mech.114, 41 ~1982!# for an ideal gas, shows that these deviations
are unstable, coming to dominate the shape of a shock wave as it converges. The instability is weak, although
not as weak as in an ideal gas. Perturbations grow as a small inverse power of the radius. The mechanism for
concentration of energy in sonoluminescence involves a spherical converging shock. The validity of the theory
given here is checked by comparing the results for spherically symmetric shocks with a simulation by Kondic,
Gersten, and Yuan@Phys. Rev. E52, 4976~1995!#. We then estimate the degree of bubble symmetry necessary
for sonoluminescence and relate this result to the experimental robustness of sonoluminescence.
@S1063-651X~96!01211-1#

PACS number~s!: 47.40.2x, 78.60.Mq, 62.50.1p

I. INTRODUCTION

Sonoluminescence@1,2# is a remarkable phenomenon
where a small bubble of gas, surrounded by liquid, collapses
so quickly that the gas inside the bubble is heated to a tem-
perature where it emits light. The energy for this collapse is
supplied by sound waves in the surrounding liquid. Water is
the most commonly used liquid, and most experiments have
used bubbles of air, although various other gases such as
hydrogen@3# and ethane@4# have been successfully used. A
recent series of elegant experiments by Putterman and co-
workers@3–7# has explored the dependence of sonolumines-
cence on the composition of the fluids and on the various
control parameters.

Although it has recently been suggested that sonolumines-
cence is caused by a quantum radiation effect@8#, this theory
is unproven. In this paper we take the more conventional
view that light emission is due to a hot spot at the center of
the bubble. Energy is concentrated first by a collapsing
bubble and then by a shock wave, launched towards the bub-
ble’s center as the bubble nears its minimum radius. This
theory, proposed by Greenspan and Nadim@9#, explains the
very short duration of the pulses of light observed in sonolu-
minescence, as well as the high temperatures necessary for
light emission.

A critical feature of sonoluminescence is the spherical
symmetry of the bubble. Only if the collapsing bubble is
nearly spherical can a shock wave focus accurately at the
very center of the bubble, producing very high temperatures.
However, theoretical studies@9–13# have largely ignored de-
viations from spherical symmetry because of the difficulty of
fully three-dimensional calculations. Some authors, most no-
tably Brenneret al. @14,15# and Lofstedtet al. @17# have re-
cently considered deviations from symmetry in the bubble
surface, but no three-dimensional study of the dynamics of
the gas enclosed in the bubble has been attempted. In this
paper, we study the three-dimensional dynamics of shocks
inside the bubble.

The assumption of complete spherical symmetry greatly
simplifies calculations, but removes some important physical
effects. The size of deviations from spherical symmetry con-
trols how sharply the converging shock wave focuses and so
may limit the maximum temperature reached. Deviations
from spherical symmetry must also play an important role in
the differences between multibubble and single-bubble
sonoluminescence@16#. Experiments@7# show an abrupt ces-
sation of the nonspherical oscillations of a bubble as sonolu-
minescence begins. This transition is one of the most myste-
rious features of sonoluminescence@17#.

The subject of the present paper is the propagation of
deviations from spherical symmetry in a strong near-
spherical shock wave as it converges in a van der Waals gas.
We use an approximate, geometrical theory of shock wave
propagation, due to Whitham@18#, and a further approxima-
tion valid for strong shocks. The geometrical theory is well
adapted to converging shock waves and gives highly accu-
rate results in the case of spherical symmetry. Since a con-
verging shock is strengthened as it focuses on the origin, the
strong-shock approximation is appropriate. The same ap-
proximations were used by Gardneret al. @19# in their analy-
sis of shock convergence in an ideal gas.

The behavior of converging shocks in ideal gases has
been studied in some depth using the geometrical theory. It is
well known @18# that plane shock waves are stable, in the
sense that small deviations from the planar shape are reduced
in size as the shock propagates, and that cylindrical converg-
ing shocks are unstable. These results are valid only in the
linear approximation and do not apply to large deviations
from spherical or cylindrical symmetry. Numerical analysis
of the equations of shock dynamics shows that in the two-
dimensional case, polygonal converging shocks may be
stable and produce the same energy concentration as cylin-
drically symmetric shocks@20#.

In the spherical case, Gardneret al. @19# have analyzed
the stability of converging spherical shocks in an ideal gas in
the linear approximation, using a different formulation of the
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theory of shock dynamics to the one we employ. They found
a weak instability. The numerical results of Schwendeman
confirm this conclusion@21#.

We shall see that the additional terms in the van der
Waals equation of state modify the results only by changing
the value of some exponents: the qualitative behavior is the
same as for an ideal gas. Hence small deformations of a
converging spherical shock in a van der Waals gas are un-
stable: they come to dominate the shape of the shock wave as
it converges. However, the instability is weak. Deformations
grow only as a small inverse power of the radius, although
the growth is faster than in an ideal gas. The weakness of the
instability helps to explain the robustness of sonolumines-
cence as an experimental phenomenon.

In the final part of the paper, the implications of the re-
sults for sonoluminescence are discussed. We estimate the
degree of bubble symmetry necessary for sonoluminescence
and some possible sources of deviations from spherical sym-
metry, including thermal fluctuations, are considered.

The physical quantities used in this paper are those for a
bubble of air in water. Where detailed knowledge of the
dynamics of a sonoluminescing bubble is necessary, we use
the results of the recent simulations by Kondicet al. @12#.

II. DYNAMICS OF CONVERGING SHOCKS

We now present a simple theoretical treatment of insta-
bilities in a strong, converging spherical shock in a van der
Waals gas. In Sec. II A, we describe the equation of state and
notation used. In Sec. II B, shock equations for strong shocks
are derived. The approximate theory of shock propagation is
then described in Secs. IIC1 and IIC2. We apply this
theory, first, in Sec. IID1, to a spherically symmetric shock
and then, in Sec. IID2, to deviations from spherical symme-
try.

A. The van der Waals gas

Because of the high pressures reached when the bubble is
at its smallest, we use the van der Waals equation of state
@22# with no attraction term. Written in terms of the density
r51/V, the equation is

p5
RT

1/r2b
. ~1!

The excluded volume isb51.2631023 m3 kg21 andR is
the gas constant per kilogram,R5285 J kg21 K21. The
maximum possible density is

rm5
1

b
5794 kg m23. ~2!

The same equation of state was used by Wu and Roberts@11#
and by Kondicet al. @12# in their numerical calculations.

We introduce the parameters

z512br ~3!

and

y512
br

g
, ~4!

so that settingy5z51 recovers the ideal gas equations. The
van der Waals equation then becomes

p

r
5
RT

z
. ~5!

Since the entropy of the van der Waals gas is@22#

S5cvln@p~V2b!g#1 const, ~6!

the speed of sounda, which satisfies

a25U]p]r U
S

, ~7!

is given by

a25
gp

rz
. ~8!

We shall also use the enthalpy

h5
p

r

gy

g21
. ~9!

B. Shock equations for strong shocks

Three equations relating the fluid-mechanical quantities
on either side of a shock wave can be derived from the con-
servation of energy, momentum, and mass@18#. They are

r2v25r1v1 , ~10!

p21r2v2
25p11r1v1

2 , ~11!

and

h21
1
2 v2

25h11
1
2 v1

2 . ~12!

In these equations, the subscript 1 denotes variables ahead of
the moving shock front and the subscript 2 variables behind
the front. The velocitiesv1 andv2 are measured in the frame
of reference where the shock is stationary.

We shall now derive ‘‘shock conditions’’ for strong
shocks in the van der Waals gas. These are equations that
relate the temperature, pressure, and density behind a strong
shock to the Mach number of the shock and the state of the
gas in the undisturbed area ahead of the shock. The Mach
numberM is the speed of the shock relative to the gas ahead,
measured in units of the sound speed. Therefore

v15Ma1 ~13!

and

v1
25M2a1

25
M2gp1

r1z1
. ~14!

Eliminating v2 from Eqs. ~10!–~12! and then replacing
v1 using Eq.~14! yields
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p2
p1

511
gM2

z1
S 12

1

m D ~15!

and

p2
p1

gy22mgy15
g~g21!mM2

2z1
S 12

1

m2D , ~16!

wherem5r2 /r1. Eliminatingp2 /p1, we obtain

M2~m21!@~g21!~m11!22y2g#12mz1~my12y2!50.
~17!

To find the limiting condition for strong shocks, we take the
limit M→`, obtaining a quadratic equation inm:

m2~g21!22gy2m1g~2y221!1150. ~18!

The two solutions arem51, which corresponds to the situ-
ation where no shock is present, and

m5
g11

g21
2
2br2
g21

. ~19!

Sincem5r2 /r1, this gives us the density behind the shock
in terms of the density ahead:

r25
~g11!r1

g2112br1
. ~20!

This is the first of the shock conditions. We can obtain simi-
lar Eqs. forp2 andv2: eliminatingm from Eqs.~15! and~19!
gives

p25
2gM2p1

g11
~21!

and using Eqs.~10! and ~19! gives

v25a1M
g2112br1

g11
. ~22!

We shall also need the absolute velocity of the gas behind
the shock, assuming that the gas in front is stationary. This is

u25a1M2v25
2a1Mz1

g11
. ~23!

Eqs.~20!–~23! reduce to the equations for an ideal gas@see
@18#, Eq. ~6.110!# when z15y151. We shall also use an
equation for the value ofa behind the shock:

a1
25

2g

g21 F a1Mg11
~g2112br0!G2. ~24!

C. Shock dynamics

In this section, we describe an approximate theory of
shock wave propagation, due to Whitham. The theory is de-
scribed in detail in Whitham’s book@18# and in the original
papers@23,24#. Here we give a brief summary and note the
minor changes that are necessary when the van der Waals
equation of state is used rather than the ideal gas equation.

The theory will be used in the next section to treat asymme-
tries in imploding shock waves.

1. The Chisnell-Whitham characteristic rule

The starting point for the theory is the application of the
equations of gas dynamics to the problem of shock propaga-
tion down a tube of nonuniform cross sectionA(x). By av-
eraging the gas equations across the tube@18#, we obtain

r t1urx1rux1
ru

A

dA

dx
50, ~25!

r~ut1uux!1px50, ~26!

pt1upx2a2~r t1urx!50, ~27!

where subscripts denote partial derivatives.
A natural approach to the solution of these equations is to

use the method of characteristics. One of the characteristic
equations is

dp

dx
1ra

du

dx
1

ra2u

~u1a!A

dA

dx
50, ~28!

which applies to the characteristic

dx

dt
5r~u1a!. ~29!

Equation ~28! is valid only along the curves in the (x,t)
plane, behind the shock front, described by~29!. The idea of
the Chisnell-Whitham characteristic rule is to apply~28!
along the shock front. We thus neglect the difference in the
constants of integration obtained when~28! is solved on dif-
ferent characteristics that intersect the shock front. These dif-
ferences arise from the nonuniformity of the flow behind the
shock, so the characteristic rule effectively ignores the influ-
ence of the flow behind the shock wave on the shock propa-
gation. Whitham@18,23,24# discusses the error introduced by
this approximation. Because the effect of the flow behind the
shock on the shock dynamics is ignored, the approximation
is very good for situations where the shock wave accelerates
with time, so that features of the flow behind do not ‘‘catch
up’’ with the shock. The best examples of flows with this
characteristic are converging shock waves, which are the
subject of this paper. For spherically and cylindrically sym-
metric implosions in ideal gases, the results of the Chisnell-
Whitham rule can be compared with exact solutions and are
correct to three significant figures.

Assuming that the characteristic equation~28! applies on
the shock front, we can use the shock conditions~20!–~24! to
write the quantities in it, which are those immediately behind
the shock, in terms of those ahead of the shock and the Mach
number. The shock conditions we use here are the strong
shock conditions for the van der Waals gas rather than the
ideal gas shock conditions used by Whitham@18#. The result
is

l

M

dM

dx
1
1

A

dA

dx
50, ~30!

where
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l511
2~g21!

gv1
1

g12br1
v1

S 2~g21!

g D 1/2 ~31!

and

v15g2112br1 . ~32!

For b50, this reduces to the value for strong shocks in the
ideal gas, as calculated by Whitham@18#:

l511
2

g
1S 2g

g21D
1/2

. ~33!

The differential equation~30! can easily be solved to give
A as a function of the Mach numberM :

M5M0A
2l. ~34!

This equation, valid for strong shocks in the van der Waals
gas, is the main result of the Chisnell-Whitham rule.

2. The ray-tube approximation

The ray-tube approximation is used to construct an ap-
proximate geometrical theory of shock-wave motion. Each
small element of a shock front is treated as if it were propa-
gating in a tube whose walls are perpendicular to the shock
front. This approximation is independent of the Chisnell-
Whitham rule. Whitham@18,23,24# and others@19–21# have
applied the theory produced by combining the two approxi-
mations to a variety of problems of shock diffraction and
stability, and where the results can be compared with exact
theoretical results or with experiment, the theory proves very
accurate.

The theory is formulated in terms of a functiona(x)
whose contours give the positions of the shock front at dif-
ferent times. The solution of the equation

a~x!5a1t ~35!

is a surface that is the position of the shock at timet. The
function a(x) therefore defines the trajectory of the shock
front completely. Whitham@18# shows that the geometry of
ray tubes implies thata(x) satisfies the equations

M5
1

u¹au
~36!

and

¹•SMA¹a D50. ~37!

We shall refer to these two equations as the Whitham
equations. Together with the relationship betweenM andA
@Eq. ~34!#, they form the basis of the geometrical theory of
shock propagation. Using the equations in this form, rather
than in the form used by Gardneret al. @19#, will allow us to
perform the stability calculation simply.

D. Converging shock waves

We now apply the geometrical theory of shock dynamics
to the problem of converging shock waves. The first step is

to find the solution of the geometrical shock equations that
corresponds to a spherically symmetric converging shock.
This solution is well known@18# and provides a simple ex-
ample of the use of the equations. It will be used as the
starting point for the perturbation theory of the following
section, where deviations from the spherical solution are
treated.

1. Spherically symmetric converging shocks

We assumea5a(r ), where r is the distance from the
origin, and alsoA5A(r ) andM5M (r ). We then have

¹a5 r̂
da

dr
. ~38!

For a shock moving inward,da/dr,0, so the first Whitham
equation~36! gives

M52S da

dr D
21

~39!

and the second~37! becomes

¹•S r̂AD50. ~40!

The vector field r̂ /A is therefore conservative and the only
possible choice is

A5A0r
2, ~41!

whereA0 is a constant. This is exactly as we would expect:
A is simply the area available for shock propagation at rad-
ius r .

Now that we have the form ofA(r ), the relationship~34!
betweenM andA gives usM (r ):

M5
1

b
r22/l, ~42!

whereb is a constant. The functiona(r ) can be obtained by
solving the differential equation~39!. The result is

a~r !52
b

112/l
r 112/l. ~43!

The constant of integration has been chosen so that the time
when the shock wave reaches the origin ist50. Since
a(r )5a1t, the radius as a function of time is

r5r 0~2t !l/~l12!, ~44!

wherer 0 is a constant.
For an ideal gas withg51.4, we havel55.0743, and the

exponent for the Mach number in Eq.~42! is 2/l50.3943,
agreeing with the exact result from the solution of Guderley
@18,25# to three significant figures. The accuracy of this ap-
proximate theory for an unperturbed spherical shock in an
ideal gas is therefore excellent.

The numerical results of Kondicet al. @12#, giving the
trajectory of a spherically symmetric shock wave in a col-
lapsing bubble, can also be compared with the above result.
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For this we need the densityr1 of undisturbed gas ahead of
the shock wave. The shock wave inside a sonoluminescing
bubble is launched and converges while the bubble is close
to its minimum radius. In the paper of Kondicet al., this
minimum radius is approximately 0.56mm. The equilibrium
radius of the bubble at atmospheric pressure is 4mm, so
assuming a density of 1.3 kg m23 for air at 1 atm, we obtain
a density for the gas in the bubble at minimum radius of
r15 473 kg m23. Equation~31! then yieldsl52.58, and so
the exponent in Eq.~44! that describes the time dependence
of the shock’s radius is

l

l12
50.56. ~45!

Using the parameters for an ideal gas gives the value 0.72.
Figure 1 compares shock trajectories with these two expo-
nents with data taken from a graph in the paper of Kondic
et al. @12#. One can see that the theoretical curve for the van
der Waals gas fits the data from the simulation very well.
This agreement gives us some confidence that the approxi-
mate theory of shock propagation is valid for this problem.

2. Deviations from spherical symmetry

In this section, first-order perturbation theory is used to
study the behavior of small deviations from the perfectly
spherical shape of the preceding section. We aim to find out
whether such perturbations become more or less important as
the shock converges and to estimate their growth or decay
rates. The treatment given here is essentially equivalent to
that of Gardneret al. @19#, although a different form of the
Whitham equations is used.

We take

a~r ,u,f!52a0~r !1em~r !Y~u,f!. ~46!

The terma0 is the spherical solution as in Eq.~43! and the
second term is a perturbation whose dependence on the ra-
dius is contained in the functionm. A suitable choice for
Y(u,f) is a spherical harmonic

Y~u,f!5Pn
m~u!cosmf, ~47!

wherePn
m(u) is an associated Legendre polynomial@26#. All

calculations will be to first order in the perturbation param-
etere.

By placing this trial solution in the Whitham equations
~36! and~37! and using the relationship~34! betweenM and
A from the Chisnell-Whitham rule, we shall find the form of
the functionm. We first calculate¹a to first order ine:

¹a52 r̂br 2/l1eF r̂m rY1 û
mYu

r
1 f̂

mYf

r sinuG1O~e2!.

~48!

As before, subscripts are used to denote partial derivatives.
Using the first Whitham equation~36! and the relationship
betweenM andA @Eq. ~34!#, we find that

M

A
5M S MM0

D l

5
1

M0
l u¹au2~11l!. ~49!

Hence

M

A
5

1

M0
lb11lr 2/l12 S 11e~11l!

m rY

br 2/lD1O~e2! ~50!

FIG. 1. Trajectories of spherical converging shock waves from the approximate theory of shock propagation and from the numerical
simulation of Kondicet al. @12#. The dots are points taken from a graph in the paper of Kondicet al., the dotted line is calculated from the
theoretical trajectory for an ideal gas, and the solid line is from the theoretical trajectory for a van der Waals gas.
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We now calculate (M /A)¹a by multiplying Eq.~50! by Eq.
~48!. Setting the divergence of this quantity to zero, as in the
second Whitham equation~37!, yields the partial differential
equation

Y sinu~2m r r2lm rr r
2!1mS ]

]u
~Yusinu!1

Yff

sinu D50.

~51!

Since Pn
m(u) obeys the associated Legendre equation

@26#, choosingY as in Eq.~47! leads to an ordinary differ-
ential equation form:

lr 2
d2m

dr2
22r

dm

dr
1mn~n11!50. ~52!

This equation has solutions

m~r !5r j, ~53!

where

j5
1

2l
@21l6A~21l!224ln~n11!#. ~54!

We now have the first-order behavior ofa(r ,u,f), but
this is not the same as the position of the shockr (u,f,t).
The first-order term inr is related to the term ina by the
equation

dr52daS ]a0

]r D 21

, ~55!

wherea0(r ) is given by Eq.~43!. Hence, if the perturbation
to a is proportional tor j, as in Eq.~53!, the perturbation to
r is proportional tor x, where

x5j2
2

l
. ~56!

The n50 spherical harmonics are independent ofu and
f. The first nontrivial solutions are those withn51, but
these represent translational motions of the bubble. Solutions
for n>2 represent true deformations of the shock’s shape.
Figure 2 shows the deformations of a sphere represented by
the threen52 spherical harmonics.

For n>2, the discriminant in Eq.~54! is imaginary. The
imaginary component ofx represents oscillations in the per-
turbations from spherical symmetry as the shock converges.
The frequency of these oscillations depends onn ~and on the
radiusr ), but the rate of growth of the perturbation is inde-
pendent ofn for n>2. The perturbations’ dependence onr
can be written as

dr;r x5r x8cosS lnr2l
@~l12!224ln~n11!#1/2D , ~57!

wherex8 is the real part ofx,

x85
1

2
2
1

l
. ~58!

A measure of the influence of a perturbation on the shape
of a nearly spherical shock wave is the size of the perturba-
tion divided by the radiusdr /r . Although the sizedr of a
perturbation decreases~as r x) as the shock converges, its
influence on the shape of the shock increases~asr x21). Fig-
ure 3 shows the growth and oscillation ofdr /r for perturba-
tions with n52, 4, and 8. Both the magnitude and the fre-
quency of oscillation of deformations of the spherical shock
wave increase as the shock converges. The growth rate of
perturbations is independent of the value ofn, but perturba-
tions with larger values ofn oscillate more quickly.

FIG. 2. Deformations of a sphere represented by then52
spherical harmonics. An undeformed sphere is shown in~a!. Spheri-
cal harmonicsY2

0, Y2
1, andY2

2 are shown in~b!, ~c!, and~d!, respec-
tively.

FIG. 3. Growth and oscillation of deformations of a spherical
converging shock wave. The graph showsdr /r for deformations
from spherical symmetry described by spherical harmonics with
n52, 4, and 8. Perturbations with a larger value ofn oscillate more
quickly as the shock converges. However, the growth rate of per-
turbations is independent ofn. The ‘‘envelope’’ curve that gives the
amplitude of oscillations for all values ofn is also shown.
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We have shown that a collapsing spherical shock wave is
unstable, but the instability is very weak. Perturbations grow
as a power of the radius, rather than exponentially. A power-
law instability of this kind also appears in the dynamics of
the bubble surface@27#. Because the instability is weak, a
collapsing shock that is nearly spherical is not always dis-
rupted by instability before the collapse reaches very small
scales. A certain size of deviation from spherical symmetry
in the initial conditions is needed before the effects of the
instability become large enough to be important.

III. DEVIATIONS FROM SPHERICAL SYMMETRY
AND SONOLUMINESCENCE

In this section, we apply the results on the instability of
converging shocks, obtained in the preceding section, to the
theory of sonoluminescence. The high temperatures neces-
sary for sonoluminescence are caused by a converging
spherical shock. If this shock is disrupted by instability be-
fore it has time to concentrate energy at the center of the
bubble, no light will be produced. We first estimate the size
of the deviation from spherical symmetry in a collapsing
bubble that is needed to disrupt sonoluminescence, then con-
sider some possible sources of this asymmetry.

The physical parameters used are taken from the paper of
Kondic et al. @12#, which is the most recent and complete
numerical simulation of sonoluminescence known to the au-
thor. The main physical assumption is that the linear theory
of deviations from spherical symmetry remains approxi-
mately valid when deviations from spherical symmetry be-
come large. Numerical evidence from the case of the ideal
gas@20,21# suggests that any error in the linear approxima-
tion overestimates the rate of growth of large deviations. We
can therefore regard the results of this section as an upper
bound on the effect of shock instability.

A. Amount of distortion of a collapsing bubble necessary
to inhibit sonoluminescence

The results of Kondicet al. @12# show that most of the
light produced in a sonoluminescing bubble comes from a
small volume, of radiusr s;10 nm at the center of the
bubble. If the converging shock wave is disrupted before it
reaches this radius, sonoluminescence will not occur. The
shock is disrupted if the size of perturbations from spherical
symmetry at this pointdr s is of the same order as the radius
r s , that is, if

dr s
r s

;1. ~59!

To estimate the conditions that will bring about this asym-
metry, we first need to calculate the exponentx8. The value
of l derived from the results of Kondicet al. in Sec. IID1.
of the present paper isl52.59, and so the exponent that
describes the dependence of the shock’s shape on radius is
given by Eqs.~54! and ~56! as

x85
1

2
2
1

l
50.11. ~60!

For an ideal gasl55.07 and so the exponentx8 is 0.30.
Perturbations are therefore more unstable in the van der
Waals gas at this density than in the ideal gas.

In the calculations of Kondicet al., the shock wave first
appears at a radiusr l of around 0.36m m. Sincedr is pro-
portional tor x8, we have

dr s
r s

.
dr l
r l

S r sr l D
x821

, ~61!

wheredr l is the size of the deviation from spherical symme-
try at the point where the shock wave first appears. Setting
dr s /r s51, we obtain a value for the size of perturbation at
the launch of the shock that is required to disrupt sonolumi-
nescence:

dr l;15 nm, ~62!

or about 1/24 the radius of the shock wave. This illustrates
the weakness of the shock wave’s instability: a deformation
of the shock’s shape is magnified only by a factor of 24 as
the shock wave itself collapses by a factor of 36.

The next question that must be considered is how asym-
metries in the surface of a collapsing bubble are transmitted
to the shock wave at its time of launch. The shock wave does
not appear immediately inside the bubble surface. As the
theory of Greenspan and Nadim@9# suggests and the simu-
lations of Kondicet al. @12# show, a shock wave first appears
when the bubble radius is nearing its minimum, at a distance
from the bubble’s center around two-thirds of the bubble
radius. This means that there is a layer of gas between the
bubble surface and the shock, which may smooth out some
deviations from spherical symmetry, making the shock wave
more symmetric than the bubble surface.

This effect will be much more pronounced for short-
wavelength perturbations of the bubble surface~correspond-
ing to spherical harmonics with large values ofn) than it is
for the long-wavelength perturbations~small values ofn).
For the lowest spherical harmonics, withn52,3, the effect
will be relatively small, as pressure waves would need to
travel around the inside of the bubble at very high speeds to
smooth asymmetries of this wavelength. In the future we
hope to develop a consistent theory of the interaction be-
tween deviations from spherical symmetry in the bubble and
in the shock. For the approximate calculations presented
here, we concentrate on long-wavelength modes and ignore
this effect, while keeping in mind the possible error caused.
We therefore estimate the amount of asymmetry in the
bubble surface needed to disrupt sonoluminescence to be
about one part in twenty.

B. Causes of asymmetry in the bubble surface

We now consider the possible sources of asymmetry in
the collapsing bubble. The non-uniformity of the sound pres-
sure field in the liquid surrounding the bubble can be ig-
nored, since the wavelength of the sound is at least a few
centimeters, while the size of the bubble is measured in mi-
crometers. The next cause to consider is thermal fluctuations
of the bubble.

The restoring force that controls thermal fluctuations of
the bubble’s surface is surface tension. For an order-of-
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magnitude estimate, we take the increase in area of the bub-
ble’s surface due to a fluctuation in radiusdr to be of order
(dr )2, giving a surface energyE5s(dr )2. The equipartition
theorem then gives an estimate for the rms fluctuations:

dr rms;S kTs D 1/2. ~63!

For temperatures of a few thousand degrees kelvin,
dr rms;1 nm. Thermal fluctuations are therefore much too
small to disrupt sonoluminescence. A more careful treat-
ment, expanding the deviations from spherical symmetry in
spherical harmonics, gives a similar result.

To understand how sonoluminescence is inhibited in cer-
tain parameter ranges in experiments, we must study the dy-
namics of the shape of a collapsing bubble, as in the theo-
retical work of Brenneret al. @14,15#. The subject is
complicated by the presence of two different instabilities of
the bubble surface and also by mass transport across the
bubble surface, which is not well understood@15,17#. Neither
theoretical studies of bubble dynamics nor experiments have
yet yielded estimates of the size of deviations from spherical
symmetry. However, Putterman and his group@28# are work-
ing on experiments to answer this question, and their pre-
liminary results seem to indicate that the asymmetry in a
collapsing bubble is of the same order of magnitude as the
critical amount of asymmetry derived here.

IV. CONCLUSION

We have shown that in a van der Waals gas, small defor-
mations of a nearly spherical converging shock wave in-
crease as the shock converges. This suggests that at some
critical radius, the spherical shape will be completely lost
and the convergence disrupted. In this sense, a converging
shock wave is unstable. The instability is weak, although not
as weak as in an ideal gas. Perturbations to the spherical
shape grow slowly, as an inverse power of the radius. In a
sonoluminescing bubble of gas, this weakness is vitally im-
portant because it allows shock waves to focus energy in a
very small region at the center of a bubble, even when slight
deviations from spherical symmetry exist.

The conclusions reached here seem to depend on the as-
sumption that the linear theory can be extended beyond its
range of validity to large deviations from spherical symme-
try. However, as we noted earlier, numerical evidence
@20,21# suggests that any error in the linear theory overesti-
mates the growth of large deviations. Neglect of the damping
of asymmetry as the moving bubble surface generates a
shock wave may also cause the effect of asymmetries to be
overestimated. The results given here should therefore be
considered a ‘‘worst case’’ analysis. We can say with some
certainty that for bubbles with asymmetry less than one part
in twenty, shock instability does not limit the temperatures
reached at the center of the bubble.
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