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Instability of converging shock waves and sonoluminescence
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(Received 30 May 1996

We study the problem of the stability of a nearly spherical converging shock wave in a van der Waals gas
and consider the implications for sonoluminescence. An approximate geometrical theory of shock propogation,
due to WhithamLinear and Non-linear Wave@Niley, New York, 1974; J. Fluid. Mech.2, 146 (1957); 5,

369 (1959], is used. A first-order treatment of deviations from spherical symmetry, similar to one performed
by Gardner, Brook, and Bernstdid. Fluid Mech.114, 41(1982] for an ideal gas, shows that these deviations

are unstable, coming to dominate the shape of a shock wave as it converges. The instability is weak, although
not as weak as in an ideal gas. Perturbations grow as a small inverse power of the radius. The mechanism for
concentration of energy in sonoluminescence involves a spherical converging shock. The validity of the theory
given here is checked by comparing the results for spherically symmetric shocks with a simulation by Kondic,
Gersten, and YuafPhys. Rev. 552, 4976(1995]. We then estimate the degree of bubble symmetry necessary

for sonoluminescence and relate this result to the experimental robustness of sonoluminescence.
[S1063-651%96)01211-1

PACS numbdis): 47.40~x, 78.60.Mq, 62.50+p

[. INTRODUCTION The assumption of complete spherical symmetry greatly
simplifies calculations, but removes some important physical
Sonoluminescencél,2] is a remarkable phenomenon effects. The size of deviations from spherical symmetry con-
where a small bubble of gas, surrounded by liquid, collapsetols how sharply the converging shock wave focuses and so
so quickly that the gas inside the bubble is heated to a temmay limit the maximum temperature reached. Deviations
perature where it emits light. The energy for this collapse ifrom spherical symmetry must also play an important role in
supplied by sound waves in the surrounding liquid. Water ighe differences between multibubble and single-bubble
the most commonly used liquid, and most experiments haveonoluminescendd. 6]. Experiment§7] show an abrupt ces-
used bubbles of air, although various other gases such astion of the nonspherical oscillations of a bubble as sonolu-
hydrogen[3] and ethang¢4] have been successfully used. A minescence begins. This transition is one of the most myste-
recent series of elegant experiments by Putterman and coious features of sonoluminescer{d&].
workers[3—7] has explored the dependence of sonolumines- The subject of the present paper is the propagation of
cence on the composition of the fluids and on the variousleviations from spherical symmetry in a strong near-
control parameters. spherical shock wave as it converges in a van der Waals gas.
Although it has recently been suggested that sonoluminesA/e use an approximate, geometrical theory of shock wave
cence is caused by a quantum radiation eff8§tthis theory  propagation, due to Whithafd 8], and a further approxima-
is unproven. In this paper we take the more conventionation valid for strong shocks. The geometrical theory is well
view that light emission is due to a hot spot at the center ofidapted to converging shock waves and gives highly accu-
the bubble. Energy is concentrated first by a collapsingate results in the case of spherical symmetry. Since a con-
bubble and then by a shock wave, launched towards the bulverging shock is strengthened as it focuses on the origin, the
ble’s center as the bubble nears its minimum radius. Thistrong-shock approximation is appropriate. The same ap-
theory, proposed by Greenspan and Naff# explains the proximations were used by Gardredral.[19] in their analy-
very short duration of the pulses of light observed in sonolu-sis of shock convergence in an ideal gas.
minescence, as well as the high temperatures necessary for The behavior of converging shocks in ideal gases has
light emission. been studied in some depth using the geometrical theory. It is
A critical feature of sonoluminescence is the sphericalwell known [18] that plane shock waves are stable, in the
symmetry of the bubble. Only if the collapsing bubble is sense that small deviations from the planar shape are reduced
nearly spherical can a shock wave focus accurately at thim size as the shock propagates, and that cylindrical converg-
very center of the bubble, producing very high temperaturesng shocks are unstable. These results are valid only in the
However, theoretical studi¢9—13] have largely ignored de- linear approximation and do not apply to large deviations
viations from spherical symmetry because of the difficulty offrom spherical or cylindrical symmetry. Numerical analysis
fully three-dimensional calculations. Some authors, most noef the equations of shock dynamics shows that in the two-
tably Brenneret al.[14,15 and Lofstedtet al. [17] have re- dimensional case, polygonal converging shocks may be
cently considered deviations from symmetry in the bubblestable and produce the same energy concentration as cylin-
surface, but no three-dimensional study of the dynamics oflrically symmetric shock§20].
the gas enclosed in the bubble has been attempted. In this In the spherical case, Gardnet al. [19] have analyzed
paper, we study the three-dimensional dynamics of shockihe stability of converging spherical shocks in an ideal gas in
inside the bubble. the linear approximation, using a different formulation of the
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theory of shock dynamics to the one we employ. They found bp
a weak instability. The numerical results of Schwendeman y=1- > (4)
confirm this conclusioh21].

We shall see that the additional terms in the van dekg that settingg=z=1 recovers the ideal gas equations. The

Waals equation of state m0d|fy the results Only by Changing/an der Waals equation then becomes
the value of some exponents: the qualitative behavior is the

same as for an ideal gas. Hence small deformations of a p RT

converging spherical shock in a van der Waals gas are un- ;: 7 ®)

stable: they come to dominate the shape of the shock wave as

it converges. However, the instability is weak. Deformations  Since the entropy of the van der Waals gag2i2|

grow only as a small inverse power of the radius, although

the growth is faster than in an ideal gas. The weakness of the S=c,In[p(V—b)?]+ const, (6)

instability helps to explain the robustness of sonolumines: : .

cence as an experimental phenomenon. the speed of sound, which satisfies
In the final part of the paper, the implications of the re-

sults for sonoluminescence are discussed. We estimate the a’=

degree of bubble symmetry necessary for sonoluminescence

and some possible sources of deviations from spherical sym- .

metry, including thermal fluctuations, are considered. is given by
The physical quantities used in this paper are those for a

bubble of air in water. Where detailed knowledge of the azzy—p_

dynamics of a sonoluminescing bubble is necessary, we use pz

the results of the recent simulations by Kondical. [12].

ap
ap
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S

®

We shall also use the enthalpy

II. DYNAMICS OF CONVERGING SHOCKS vy
—1

Y

h= P 9)
We now present a simple theoretical treatment of insta- P
bilities in a strong, converging spherical shock in a van der

Waals gas. In Sec. Il A, we describe the equation of state and B. Shock equations for strong shocks
notation used. In Sec. 11 B, shock equations for strong shocks Three equations relating the fluid-mechanical quantities
are derived. The approximate theory of shock propagation ign either side of a shock wave can be derived from the con-

then described in Secs. IIC1 and IIC2. We apply thiSSer\/ation of energy, momentum, and mB]sg] They are
theory, first, in Sec. IID 1, to a spherically symmetric shock

and then, in Sec. 11D 2, to deviations from spherical symme- PoU2=p1U1, (10

try.
Pa+pav5=P1tpivs, (12)

A. The van der Waals gas and
Because of the high pressures reached when the bubble is

at its smallest, we use the van der Waals equation of state h,+ %v§=h1+ %vi. (12

[22] with no attraction term. Written in terms of the density

p=1N, the equation is In these equations, the subscript 1 denotes variables ahead of

the moving shock front and the subscript 2 variables behind
_ RT the front. The velocities; andv, are measured in the frame
P= 1p—b" (1) of reference where the shock is stationary.

We shall now derive ‘“shock conditions” for strong
The excluded volume ib=1.26x10 3 m3kg~* and R is shocks in the van der Waals gas. These are eql_Jations that
the gas constant per kilogranR=285 Jkg K1 The relate the temperature, pressure, and density behind a strong
maximum possible density is shock to the Mach number of the shock and the state of the
gas in the undisturbed area ahead of the shock. The Mach
numberM is the speed of the shock relative to the gas ahead,

pmzl =794 kg m 3 2) measured in units of the sound speed. Therefore
b .
V1= M a; (13)
The same equation of state was used by Wu and Roldelts and
and by Kondicet al.[12] in their numerical calculations.
We introduce the parameters M2yp,
vi=M2ai=—"=—"—. (14)
pP1Zy

z=1-bp 3
Eliminating v, from Egs.(10)—(12) and then replacing
and v, using Eq.(14) yields
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P, yM? 1 The theory will be used in the next section to treat asymme-
by 1+ Z 1- m (15  tries in imploding shock waves.
and 1. The Chisnell-Whitham characteristic rule

) The starting point for the theory is the application of the
&W — uyy = Yy~ DuM (1_ i) (16) equations of gas dynamics to the problem of shock propaga-
P12 ! 27y ’ tion down a tube of nonuniform cross sectidx). By av-

2
)72
L . eraging the gas equations across the {ul@, we obtain
whereu=p,/p,. Eliminating p,/p;, we obtain

pu dA
M?(u=D[(y=1)(n+1)—2y,y]+2uz1(uy1—Y2) =(§) prtupytpUyt 7= = =0, (25)
To find the limiting condition for strong shocks, we take the p(Ui+uuy) +p,=0, (26)
limit M—, obtaining a quadratic equation jn: )
pi+up,—a“(p+up,) =0, (27)

2
-1)-2 +y(2y,—1)+1=0. 18
wy= D= 2yyoputy(2y,~ 1) (18 where subscripts denote partial derivatives.
The two solutions arg.=1, which corresponds to the situ- A natural approach to the solution of these equations is to

ation where no shock is present, and use the method of characteristics. One of the characteristic
equations is
vy+1 2bp
ﬂz—y_l—y_lz- (19 dp+ du+ pa’u dA_0 -
dx Pax T uraA dx O 9
Sincew=p,/p4, this gives us the density behind the shock i .
in terms of the density ahead: which applies to the characteristic
(7+1)py dx_
- =p(u+a). (29
2= T 2bpy (20 dt

This is the first of the shock conditions. We can obtain simi—glgtr’]aeti%réfi% Itsh evzlrigc?(r:‘lr):) r?tlogssgr‘iie%lzggs_ri;‘etir:j?;étz)f
lar Egs. forp, andv,: eliminatingu from Egs.(15) and(19 ’ ’ :
d P b2 I as(19 19 the Chisnell-Whitham characteristic rule is to apgB)

gives alongthe shock front. We thus neglect the difference in the
2yM?p, constants of integration obtained whe®) is solved on dif-
P2= Y+ 1 (21) ferent characteristics that intersect the shock front. These dif-
ferences arise from the nonuniformity of the flow behind the
and using Egs(10) and (19) gives shock, so the characteristic rule effectively ignores the influ-
ence of the flow behind the shock wave on the shock propa-
v—1+2bp, gation. Whithan{18,23,24 discusses the error introduced by
V2= alMT- 22 this approximation. Because the effect of the flow behind the

shock on the shock dynamics is ignored, the approximation

We shall also need the absolute velocity of the gas behini$ very good for situations where the shock wave accelerates
the shock, assuming that the gas in front is stationary. This i@ith time, so that features of the flow behind do not “catch
up” with the shock. The best examples of flows with this

2a;Mz; characteristic are converging shock waves, which are the
uy=a;M—v,= y+1 (23 subject of this paper. For spherically and cylindrically sym-

metric implosions in ideal gases, the results of the Chisnell-

Egs.(20)—(23) reduce to the equations for an ideal gase = Whitham rule can be compared with exact solutions and are

[18], Eq. (6.110] when z;=y;=1. We shall also use an correct to three significant figures.

equation for the value od behind the shock: Assuming that the characteristic equati@®) applies on
5 the shock front, we can use the shock conditi@®—(24) to
, 2y |aM write the quantities in it, which are those immediately behind

(y=1+2bpo) | . (24) the shock, in terms of those ahead of the shock and the Mach

number. The shock conditions we use here are the strong
shock conditions for the van der Waals gas rather than the

ideal gas shock conditions used by Whithgt8]. The result
In this section, we describe an approximate theory ofis

shock wave propagation, due to Whitham. The theory is de-

scribed in detail in Whitham’s booKL8] and in the original A dM  1dA
paperg23,24. Here we give a brief summary and note the M WJF A &:0’
minor changes that are necessary when the van der Waals

equation of state is used rather than the ideal gas equatiowhere

al:y—l y+1

C. Shock dynamics

(30
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2(y—1) y+2bpi(2(y—1) 172 to find the solution of the geometrical shock equations that

+ ” + o ( ) (3D corresponds to a spherically symmetric converging shock.
yen ! Y This solution is well knowr{18] and provides a simple ex-

and ample of the use of the equations. It will be used as the
starting point for the perturbation theory of the following

w1=7y—1+2bp,. (32 section, where deviations from the spherical solution are

] ] treated.
For b=0, this reduces to the value for strong shocks in the

ideal gas, as calculated by Whithdd8: 1. Spherically symmetric converging shocks

A=1

12 We assumex=«(r), wherer is the distance from the

2y
(33  origin, and als)A=A(r) andM =M(r). We then have

A—1+2+(
y \r—1

The differential equatiof30) can easily be solved to give Va=f—u (38)
A as a function of the Mach numbét: dr

M=MA ™, (34 For a shock moving inwardla/dr <0, so the first Whitham
equation(36) gives
This equation, valid for strong shocks in the van der Waals

gas, is the main result of the Chisnell-Whitham rule. (da) -1

M=—|5- (39)

2. The ray-tube approximation

The ray-tube approximation is used to construct an apand the secon@7) becomes
proximate geometrical theory of shock-wave motion. Each -
small element of a shock front is treated as if it were propa- v ( )
gating in a tube whose walls are perpendicular to the shock
front. This approximation is independent of the Chisnell- A )
Whitham rule. Whithani18,23,24 and other§19—21] have The \_/ector fl_eldr_ /A is therefore conservative and the only
applied the theory produced by combining the two approxiP0Ssible choice is
mations to a variety of problems of shock diffraction and A=A.r2 (41)
stability, and where the results can be compared with exact o
theoretical results or with experiment, the theory proves veryyhereA, is a constant. This is exactly as we would expect:

accurate. _ _ _ A is simply the area available for shock propagation at rad-
The theory is formulated in terms of a functiag(x) ius r

whose contours give the positions of the shock front at dif- Néw that we have the form o&(r), the relationshig34)

=0. (40)

ferent times. The solution of the equation betweenM andA gives usM(r):

a’(X):alt (35) 1
. . y . M=—r=2h, (42)
is a surface that is the position of the shock at tim&he B

function a(x) therefore defines the trajectory of the shock
front completely. Whithanj18] shows that the geometry of
ray tubes implies tha#(x) satisfies the equations

whereg is a constant. The function(r) can be obtained by
solving the differential equatiof89). The result is

1 _ B 142\
_ a(r)=———=-r . (43
M= gl (36) 1+2I\
and The constant of integration has been chosen so that the time
when the shock wave reaches the origintis0. Since
M a(r)=ayt, the radius as a function of time is
V- KVa =0. (37

r:ro(_t))\/(M—Z)' (44

We shall refer to these two equations as the WhithamWherer is a constant
equations. Together with the relationship betwé&érand A 0 o B
[Eq. (34)], they form the basis of the geometrical theory of For an ideal gas witfy=1.4, we have, =5.0743, and the

shock propagation. Using the equations in this form, rathefXPonent fc_)r the Mach number in EG12) is 2./)‘:0'3943’
than in the form used by Gardnet al. [19], will allow us to agreeing with the exact result from the solution of Guderley

o ; ; [18,25 to three significant figures. The accuracy of this ap-
perform the stability calculation simply. proximate theory for an unperturbed spherical shock in an

ideal gas is therefore excellent.

The numerical results of Kondiet al. [12], giving the

We now apply the geometrical theory of shock dynamicstrajectory of a spherically symmetric shock wave in a col-
to the problem of converging shock waves. The first step idapsing bubble, can also be compared with the above result.

D. Converging shock waves
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FIG. 1. Trajectories of spherical converging shock waves from the approximate theory of shock propagation and from the numerical
simulation of Kondicet al.[12]. The dots are points taken from a graph in the paper of Koedal,, the dotted line is calculated from the
theoretical trajectory for an ideal gas, and the solid line is from the theoretical trajectory for a van der Waals gas.

For this we need the densipy of undisturbed gas ahead of a(r,8,¢)=—ag(r)+eu(r)Y(6,¢). (46)

the shock wave. The shock wave inside a sonoluminescing

bubble is launched and converges while the bubble is closghe termay is the spherical solution as in E3) and the

to its minimum radius. In the paper of Kondet al, this  second term is a perturbation whose dependence on the ra-

minimum radius is approximately 0.56m. The equilibrium  dius is contained in the functiop. A suitable choice for
radius of the bubble at atmospheric pressure igmM, so  Y(¢,4) is a spherical harmonic

assuming a density of 1.3 kg ™ for air at 1 atm, we obtain
a density for the gas in the bubble at minimum radius of Y(6,¢)=P™(6)coang, (47)
p1= 473 kg m 3. Equation(31) then yields\ = 2.58, and so

the exponent in Eq44) that describes the time dependencewherepnm

T (6) is an associated Legendre polynonjizé]. All
of the shock’s radius is

calculations will be to first order in the perturbation param-
etere.

L=0.56. (45) By placing this trial solution in the Whitham equations

A+2 (36) and(37) and using the relationshi{34) betweenM and

A from the Chisnell-Whitham rule, we shall find the form of

Using the parameters for an ideal gas gives the value 0.72he functionu. We first calculateV « to first order ine:
Figure 1 compares shock trajectories with these two expo-
nents with data taken from a graph in the paper of Kondic R ) A IR #
et al.[12]. One can see that the theoretical curve for the van Va=—F8r"+¢ fu Y+ 0Mr—+ b ing +0(€).
der Waals gas fits the data from the simulation very well. (48)
This agreement gives us some confidence that the approxi-

mate theory of shock propagation is valid for this problem. aq pefore, subscripts are used to denote partial derivatives.
Using the first Whitham equatio(86) and the relationship

2. Deviations from spherical symmetry betweenM andA [Eq. (34)], we find that
In this section, first-order perturbation theory is used to
study the behavior of small deviations from the perfectly M MM 1 _(L+n)
spherical shape of the preceding section. We aim to find out a~M Mo =M—3|Va| : (49)

whether such perturbations become more or less important as
the shock converges and to estimate their growth or dec

rates. The treatment given here is essentially equivalent to
that of Gardneeet al. [19], although a different form of the M

Whitham equations is used. ==
We take A MBI

ence

MTY 2
1+ €(1+)) 5o | +O(€?) (50)

B
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We now calculate 1/A)Va by multiplying Eq.(50) by Eq.

(48). Setting the divergence of this quantity to zero, as in the

second Whitham equatidi37), yields the partial differential
equation

. 2 dJ . Y¢¢
Y'SINO(2pal =M 1) + | 25 (Y sing) + =7} =0.

sing/
(51)
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Since P;'(#) obeys the associated Legendre equation

[26], choosingY as in Eq.(47) leads to an ordinary differ-
ential equation fopu:

o2 d
A Zd—r’;—zrd—’:mn(nﬂ):o. (52)

This equation has solutions

m(r)=r¢, (53

where

1
= (24052407 —aan(n+ D). (54

We now have the first-order behavior e{r, 8, ®), but
this is not the same as the position of the sho€k, ¢,t).
The first-order term irr is related to the term i by the
equation

o= — Sa| 220 - 55
r= a r ) (59

wherea(r) is given by Eq.(43). Hence, if the perturbation
to a is proportional toré, as in Eq.(53), the perturbation to
r is proportional torX, where

_ 2
X—§—X- (56)

The n=0 spherical harmonics are independentfodnd
¢. The first nontrivial solutions are those with=1, but

these represent translational motions of the bubble. Solutions
for n=2 represent true deformations of the shock’s shape. 2

Figure 2 shows the deformations of a sphere represented
the threen=2 spherical harmonics.

For n=2, the discriminant in Eq(54) is imaginary. The
imaginary component of represents oscillations in the per-

turbations from spherical symmetry as the shock converges.

The frequency of these oscillations dependsidand on the
radiusr), but the rate of growth of the perturbation is inde-
pendent ofn for n=2. The perturbations’ dependence 1on
can be written as

X — X, In_r 2_ 1/2
Sr~rX=rXco 2)\[()\+2) Axn(n+1)1"%|, (57

wherey’ is the real part ofy,

1 1

X ZE—X. (58)

© (d)

FIG. 2. Deformations of a sphere represented by nhe2
spherical harmonics. An undeformed sphere is shown)irSpheri-
cal harmonicsyd, Y2, andY3 are shown inb), (c), and(d), respec-
tively.

A measure of the influence of a perturbation on the shape
of a nearly spherical shock wave is the size of the perturba-
tion divided by the radiussr/r. Although the sizesr of a
perturbation decreasdas rX) as the shock converges, its
influence on the shape of the shock incredass* ~1). Fig-
ure 3 shows the growth and oscillation &f/r for perturba-
tions withn=2, 4, and 8. Both the magnitude and the fre-
quency of oscillation of deformations of the spherical shock
wave increase as the shock converges. The growth rate of
perturbations is independent of the valuenptbut perturba-
tions with larger values of oscillate more quickly.

b§;/r

0

6
10° 10°¢ r (m) 107 10°®

FIG. 3. Growth and oscillation of deformations of a spherical
converging shock wave. The graph shod@dr for deformations
from spherical symmetry described by spherical harmonics with
n=2, 4, and 8. Perturbations with a larger valuenajscillate more
quickly as the shock converges. However, the growth rate of per-
turbations is independent af The “envelope” curve that gives the
amplitude of oscillations for all values of is also shown.
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We have shown that a collapsing spherical shock wave is For an ideal gaa =5.07 and so the exponegt is 0.30.
unstable, but the instability is very weak. Perturbations growPerturbations are therefore more unstable in the van der
as a power of the radius, rather than exponentially. A powerWaals gas at this density than in the ideal gas.
law instability of this kind also appears in the dynamics of In the calculations of Kondiet al, the shock wave first
the bubble surfac§?27]. Because the instability is weak, a appears at a radius of around 0.36u m. Sincedr is pro-
collapsing shock that is nearly spherical is not always disportional torX’, we have
rupted by instability before the collapse reaches very small
scales. A certain size of deviation from spherical symmetry Sre 5r,( x'-1

: (61)

Is

in the initial conditions is needed before the effects of the — = r

Is r

instability become large enough to be important.
wheredr, is the size of the deviation from spherical symme-
lIl. DEVIATIONS FROM SPHERICAL SYMMETRY t(;y ?t tfi point ‘t’)"h?re thelsr‘?fk Vr‘:ave. f'rStfappea’s' Setting
AND SONOLUMINESCENCE rs/rs=1, we obtain a value for the size of perturbation at
the launch of the shock that is required to disrupt sonolumi-
In this section, we apply the results on the instability of nescence:
converging shocks, obtained in the preceding section, to the
theory of sonoluminescence. The high temperatures neces- or|~15 nm, (62)

sary for sonoluminescence are caused by a convergin . L
spherical shock. If this shock is disrupted by instability be-gr about 1/24 the radius of the shock wave. This illustrates

fore it has time to concentrate energy at the center of théhe weakness of the shock wave’s instability: a deformation

bubble, no light will be produced. We first estimate the sizeOf the shock’s shape is magnified only by a factor of 24 as

of the deviation from spherical symmetry in a coIIapsingthe shock wave itself collapses by a factor of 36.

bubble that is needed to disrupt sonoluminescence, then COrﬁe-[rri]gsniﬁxtthgu:usrtflggetg?tarzgﬁ;bseirfort;igglreeirlz Eg\évsﬁmsiﬁ?&
sider some possible sources of this asymmetry. psing

The physical parameters used are taken from the paper & the shocklwave atits tlr_ne.of launch. The shock wave does
Kondic et al. [12], which is the most recent and complete not appear immediately inside the bubble surface. As the

numerical simulation of sonoluminescence known to the au'gheory of Greenspan and Nadir8] suggests and the simu-

: X L . lations of Kondicet al.[12] show, a shock wave first appears
thor. The main physical assumption is that the linear theorB(Nhen the bubble radiLEs i]s nearing its minimum, at al?j[i)stance

of deviations from spherical symmetry remains approxi- , .
mately valid when deviations from spherical symmetry be_fror_n the pubbles center arou.nd two-thirds of the bubble
rladlus. This means that there is a layer of gas between the

come large. Numerical evidence from the case of the ide :
gas[20,21] suggests that any error in the linear approxima%Ubble surface and the shock, which may smooth out some

tion overestimates the rate of growth of large deviations. Wedewaﬂons from spherical symmetry, making the shock wave

can therefore regard the results of this section as an uppgpo_lr_(ra].:ygfn;g:rlc 'tllhabr:etrr]r? Eﬁbg:irzurf?gﬁb nced for short-
bound on the effect of shock instability. ! Wi u P u

wavelength perturbations of the bubble surféoerrespond-

ing to spherical harmonics with large valuesmfthan it is

A. Amount of distortion of a collapsing bubble necessary for the long-wavelength perturbatiorismall values ofn).
to inhibit sonoluminescence For the lowest spherical harmonics, witl2,3, the effect

The results of Kondicet al. [12] show that most of the will be relatively small, as pressure waves would need to

light produced in a sonoluminescing bubble comes from éravel around the inside of the bubble at very high speeds to
small volume. of radiug.~10 nm at the center of the smooth asymmetries of this wavelength. In the future we
) S

bubble. If the converging shock wave is disrupted before nhope to d_ev_elop a consistent theory of the interaction be-
reaches this radius, sonoluminescence will not occur. Thiveen deviations from spherical symmetry in the bubble and

shock is disrupted if the size of perturbations from sphericarl the shock. For the a;ljproxmatel calﬁulatlgns pr((ejsgnted
symmetry at this poinbr is of the same order as the radius ere, we concentrate on long-wavelength modes and ignore
r. that is. if this effect, while keeping in mind the possible error caused.

s ' We therefore estimate the amount of asymmetry in the

St bubble surface needed to disrupt sonoluminescence to be
— (59)  about one part in twenty.

r

S

. . L . B. Causes of asymmetry in the bubble surface
To estimate the conditions that will bring about this asym-

metry, we first need to calculate the exponght The value We now consider the possible sources of asymmetry in
of \ derived from the results of Kondiet al.in Sec. IID1.  the collapsing bubble. The non-uniformity of the sound pres-
of the present paper is=2.59, and so the exponent that SUré field in the liquid surrounding the bubble can be ig-

describes the dependence of the shock’s shape on radius"1r€d: since the wavelength of the sound is at least a few
given by Eqs.(54) and (56) as centimeters, while the size of the bubble is measured in mi-

crometers. The next cause to consider is thermal fluctuations
of the bubble.
The restoring force that controls thermal fluctuations of

1 1
X'=37y =01 (60 the bubble’s surface is surface tension. For an order-of-
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magnitude estimate, we take the increase in area of the bub- IV. CONCLUSION

ble’s surface due to a fluctuation in radiéis to be of order
(8r)?, giving a surface energ= o (8r)2. The equipartition
theorem then gives an estimate for the rms fluctuations:

We have shown that in a van der Waals gas, small defor-
mations of a nearly spherical converging shock wave in-
crease as the shock converges. This suggests that at some

kT\ 12 critical radius, the spherical shape will be completely lost
5frms~(;) : (63 and the convergence disrupted. In this sense, a converging
shock wave is unstable. The instability is weak, although not
For temperatures of a few thousand degrees kelvinas weak as in an ideal gas. Perturbations to the spherical
orms~1 nm. Thermal fluctuations are therefore much tooshape grow slowly, as an inverse power of the radius. In a
small to disrupt sonoluminescence. A more careful treatsonoluminescing bubble of gas, this weakness is vitally im-
ment, expanding the deviations from spherical symmetry irportant because it allows shock waves to focus energy in a
spherical harmonics, gives a similar result. very small region at the center of a bubble, even when slight

To understand how sonoluminescence is inhibited in cerdeviations from spherical symmetry exist.
tain parameter ranges in experiments, we must study the dy- The conclusions reached here seem to depend on the as-
namics of the shape of a collapsing bubble, as in the thessumption that the linear theory can be extended beyond its
retical work of Brenneretal. [14,15. The subject is range of validity to large deviations from spherical symme-
complicated by the presence of two different instabilities oftry. However, as we noted earlier, numerical evidence
the bubble surface and also by mass transport across tfi20,21 suggests that any error in the linear theory overesti-
bubble surface, which is not well understddd,17). Neither  mates the growth of large deviations. Neglect of the damping
theoretical studies of bubble dynamics nor experiments havef asymmetry as the moving bubble surface generates a
yet yielded estimates of the size of deviations from sphericathock wave may also cause the effect of asymmetries to be
symmetry. However, Putterman and his gr¢@g|] are work-  overestimated. The results given here should therefore be
ing on experiments to answer this question, and their preeonsidered a “worst case” analysis. We can say with some
liminary results seem to indicate that the asymmetry in aertainty that for bubbles with asymmetry less than one part
collapsing bubble is of the same order of magnitude as then twenty, shock instability does not limit the temperatures

critical amount of asymmetry derived here. reached at the center of the bubble.
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